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Genome editing tools, such as zinc finger nucleases, tran-
scription activator-like effector nucleases, the CRISPR–Cas 
system and CRISPR–Cas derivatives (cytosine and adenos-

ine base editors), have been widely applied in manipulation of 
the genome, revealing their therapeutic potential. In addition to 
genome editing technologies, RNA base editing technologies have 
also been developed1. Because RNA editing is reversible and tun-
able without causing permanent changes in the genome, it may 
hold certain advantages in therapeutic applications. For RNA edit-
ing of adenosines, members of adenosine deaminase acting on the 
RNA (ADAR) family, such as ADAR1 (isoforms p110 and p150) 
and ADAR2 (refs. 2,3), have been engineered for the precise con-
version of adenosine (A) to inosine (I)1. The catalytic substrate of 
ADAR1/2 is double-stranded RNA, and the deaminase domain of 
ADAR1/2 is responsible for A-to-I RNA editing4,5. Inosine is rec-
ognized as guanosine (G) and paired with cytidine (C) in subse-
quent cellular translation processes3. To achieve targeted RNA 
editing, the ADAR protein—or its deaminase domain ADARDD—
has been fused to a variety of RNA-targeting modules, such as a 
λN-peptide6–8, a SNAP-tag9–13 and a Cas13 protein14. In addition, 
targeted RNA editing can be achieved with engineered guide RNAs 
bearing an R/G motif coupled with ectopically expressed ADAR1 
or ADAR2 proteins15–18.

However, ectopic expression of exogenous editing enzymes 
is associated with several concerns, including substantial global 
off-target editing of the genome and/or RNA transcripts19–23, 
immunogenicity24–27, oncogenicity28–30 and delivery hurdles24. Two 
RNA editing technologies, RESTORE31 and LEAPER32, reported 
by the Stafforst group and our own, leverage endogenous ADARs 
for programmable editing of RNA without the need to introduce 

exogenous proteins. LEAPER uses an engineered linear arRNA that 
can be generated through either expression in vivo via viral vectors 
or chemical synthesis in vitro. To enhance the capabilities of this 
system, here we aimed to enhance its editing efficiency and mini-
mize its off-target edits. Because editing efficiency depends on the 
abundance and stability of arRNAs, we evaluated the use of circular 
RNA, a large class of noncoding RNAs that is highly stable because 
its covalently closed ring structure protects it from exonucleases33–35.

Results
Pol II promoter-driven arRNAs enable efficient RNA editing. 
We first tested the ability of the Pol II promoter to drive arRNA 
transcription rather than U6, the weaker Pol III promoter we pre-
viously employed32 (Supplementary Fig. 1a). Using a surrogate 
reporter based on mCherry and enhanced green fluorescent protein 
(eGFP) fluorescence32, we found that the CMV promoter enabled 
a much higher level of arRNA expression than U6 (Supplementary  
Fig. 1b). Consistently, RNA editing efficiency was indeed signifi-
cantly higher when the CMV promoter was used than when the U6 
promoter was used (Supplementary Fig. 1c). These results suggest 
that arRNA abundance is critical for LEAPER efficiency and that 
the 5' cap and 3' poly(A) tail do not interfere with arRNAs in tar-
geted RNA editing.

Circular arRNAs enable efficient and long-lasting program-
mable RNA editing. We assessed the effect of circularization of 
arRNAs, because circular RNA tends to have better stability and a 
longer half-life than linear RNA33–37. We generated circular arRNAs, 
termed circ-arRNAs, using a genetically encoded approach based 
on a previous report36 (Fig. 1a). Sanger sequencing results indicated 
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that circ-arRNAs had been successfully produced (Supplementary 
Fig. 2a,b). Again, the CMV promoter produced greater amounts of 
linear arRNAs than U6 (Supplementary Fig. 2c). The abundance of 
circ-arRNAs was much higher than that of CMV promoter-driven 
arRNAs, even under the control of the U6 promoter (Supplementary 
Fig. 2c). We wondered whether we could further increase RNA 
production by combining the Pol II promoter and the RNA circu-
larization strategy. However, U6 promoter-driven circ-arRNAs out-
performed CMV promoter-driven circ-arRNAs in targeted RNA 
editing, as indicated by eGFP expression in a surrogate reporter 
assay32 (Supplementary Fig. 2d), although the editing efficiency 
for both was significantly higher than their linear counterparts.  

We reason that the 5' cap and 3' poly(A) tail contribute significantly 
to the stability of RNAs, but that both modifications are nonfunc-
tional because they are removed after arRNA circularization and 
the CMV promoter is weaker than U6 in expressing circ-arRNAs 
(Supplementary Fig. 2e). In addition, it is very likely that the 5' cap 
and 3' poly(A) tail interfere with the arRNA circularization process. 
Therefore, we decided to use the Pol III promoter to produce the 
circular version of arRNA.

The circ-arRNAs exhibited greater editing efficiency than lin-
ear arRNAs, as manifested by the significantly increased eGFP+ 
percentages among transfected cells (Fig. 1b and Supplementary  
Fig. 1d). Such targeted RNA editing by the circular version of 
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Fig. 1 | Leveraging endogenous ADAR for programmable RNA editing by genetically encoded circ-arRNAs. a, Schematic of genetically encoded 
circ-arRnAs. b, eGFP+ percentages showing the editing efficiency of different arRnA versions targeting reporter transcripts in HEK293T cells with stable 
reporter expression; n = 3, mean ± s.d. c, eGFP expression ratios induced by expression of ADAR1p110, ADAR1p150 or ADAR2 cDnA in ADAR1 knockout (HEK293T 
ADAR1–/–) cells; n = 3, mean ± s.d. d, eGFP+ percentage showing the effects of variable precursor RnA editing efficiency. Elements of circ-arRnA precursor 
were mutated or deleted in the 5' P3 Twister U2A ribozyme and/or 3' P1 Twister ribozyme that flank the ligation and arRnA sequences; n = 3, mean ± s.d.  
e, Observation of eGFP expression in HEK293T cells with stable reporter expression after transfection with U6-driven linear arRnAs and circ-arRnAs 
on days 2, 9 and 18. Scale bars, 200 μm. f, Targeted transcript editing rates at different time points after transfection by arRnAs targeting reporter; n = 2, 
mean ± s.d. g, Relative expression level of arRnAs at different time points after transfection by arRnAs targeting reporter, normalized to GAPDH; n = 3, 
mean ± s.d; nD, no detection. h, eGFP+ percentages showing the editing efficiency of different versions of arRnA-targeting reporter transcripts in multiple 
cell lines; n = 3, mean ± s.d. b–d,h, eGFP+ percentages were normalized by transfection efficiency, which was determined by mCherry+.
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arRNAs was also mediated by endogenous ADAR1 proteins, 
because the editing-generated eGFP signal completely disappeared 
in HEK293T ADAR–/– cells but was rescued by three types of ADAR 
protein (Fig. 1c). To further confirm whether enhanced RNA edit-
ing was due to circularization of arRNAs, we created different types 
of mutation or deletion on ribozymes required for the formation 
of circ-arRNAs. Either point mutation or deletion in the ribozyme 
region of the circ-arRNA precursor significantly reduced the eGFP+ 
ratio to a level equivalent to that of linear arRNAs (Fig. 1d), indicat-
ing that it is circularization of arRNAs that enables elevated effi-
ciency on targeted RNA editing. Moreover, circ-arRNA-mediated 
RNA editing was much more persistent, lasting up to 21 days  
(Fig. 1e,f and Supplementary Fig. 3), possibly due to the inherent sta-
bility of circ-arRNAs (Fig. 1g). RNA editing efficiency reached 90% 
of peak activity on day 3 post transfection, and remained high until 
the day 21 when tested (Fig. 1f). Similar to arRNAs, circ-arRNAs 
were detected in both the nucleus and cytoplasm, indicating that 
they may mediate targeted RNA editing both within and outside 

the nucleus (Supplementary Fig. 4a,b). Apart from HEK293T cells, 
we further demonstrated that circ-arRNAs also outperformed their 
linear counterparts in a panel of cell types, including HeLa, Hep G2, 
A549, RPE1, SF268, C2C12, NIH3T3 and COS-7 (Fig. 1h), indicat-
ing that circularization of arRNAs is a versatile strategy in achieving 
efficient and long-lasting targeted RNA editing.

Next, we explored whether circ-arRNAs could also enable 
efficient targeted RNA editing of endogenous transcripts. We 
designed 151-nt circ-arRNAs to target 20 different RNA sites of 
nine endogenous genes, PPIB, GUSB, KRAS, MALAT1, TUBB, 
RAB7A, PPIA, SMYD5 and CTNNB1 (Fig. 2a and Supplementary 
Table 1). Next-generation sequencing (NGS) analysis revealed that 
circ-arRNAs outperformed their linear counterparts in targeted 
RNA editing at 17 of 20 sites. However, circ-arRNAs showed a 
comparable editing rate on MALAT1 (site 1) and even a decreased 
editing rate on KRAS (sites 1 and 2) (Fig. 2a). We speculated that 
circ-arRNAs targeting these three sites might have certain struc-
tures that interfered with their target recognition or functions to 
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mediate targeted editing activity. We thus tested whether the addi-
tion of flexible RNA linkers flanking circ-arRNAs could further 
optimize their ability in mediating editing activity. Fifty-nucleotide 
flexible polyAC RNA linkers, termed AC50, were added to flank-
ing circ-arRNA151, and these circ-arRNA_AC50 linkers gave rise 
to improved editing rates at 14 sites compared with circ-arRNA151 
(Fig. 2a). The circ-arRNA_AC50 targeting KRAS (sites 1 and 2) 
did elevate the editing efficiency of the original circ-arRNAs to a 
level comparable to that of corresponding linear arRNAs. On aver-
age, the editing efficiency of circ-arRNA and circ-arRNA_AC50 
was 2.3- and 3.1-fold higher than their linear counterparts, respec-
tively (Fig. 2b).

Because circ-arRNAs are more stable than their linear counter-
parts, we investigated RNA editing at two sites, PPIA and KRAS 
(site 2), over periods of up to 13 and 7 days, respectively. For PPIA, 
the expression level of circ-arRNAs was higher than for their corre-
sponding linear counterparts (Fig. 2c). Consistent with the expres-
sion level of arRNAs, editing lasted for only 5 and >13 days for 
linear arRNAs and circ-arRNAs, respectively (Fig. 2d). For KRAS  
(site 2), although editing efficiency of linear arRNAs was higher than 
circ-arRNAs at the beginning (day 2), the editing rate of circ-arRNAs 
quickly surpassed that of their linear counterparts (days 4 and 7) 
because of the much faster degradation of the latter (Fig. 2e).

We also used adeno-associated virus (AAV) to deliver 
circ-arRNAs into HEK293T cells, human primary hepatocytes and 
human cerebral organoids. NGS results showed that AAV-delivered 
circ-arRNAs yielded much higher levels of targeted editing in all 
these cells and organoids than their linear counterparts, and in a 
long-lasting fashion (Fig. 2f–i).

Utilization of in vitro circularization strategies to generate 
circ-arRNAs. In addition to the genetically encoded circulariza-
tion strategy, we tested an in vitro strategy to generate circ-arRNAs 
(Fig. 3a). Linear arRNAs from in vitro transcription were cyclized 
by T4 RNA ligase38 and purified using high-performance liquid 
chromatography (HPLC) (Supplementary Fig. 5a). Ribonuclease 
H (RNaseH) cleavage assay further confirmed the purifity of 
in vitro-cyclized circ-arRNAs (Supplementary Fig. 5b). After trans-
fection into HEK293T cells harboring the eGFP reporter (Fig. 3a)32, 
purified circ-arRNAs generated much stronger and longer-lasting 
eGFP signals than their linear precursors (Fig. 3b). Targeted RNA 
editing rates for circ-arRNAs were more than fivefold higher 
than for linear precursors, as revealed by both Sanger sequencing  
(Fig. 3c) and NGS analysis (Fig. 3d). Moreover, in vitro-transcribed 
circ-arRNAs achieved an editing rate of >50% for endogenous PPIB 
transcripts (Fig. 3e,f). In a separate test of in vitro circularization, 
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we investigated the use of group I ribozyme-mediated autocataly-
sis37,39 to generate circ-arRNAs (Fig. 3e). NGS results showed that 
the circ-arRNAs generated by group I ribozyme autocatalysis were 
able to correct the pathogenic point mutations of IDUAW392X tran-
scripts in mouse embryonic fibroblasts (MEFs) derived from a 
mouse model of Hurler syndrome, with an editing rate of approxi-
mately 25% (Fig. 3g). Collectively, these data demonstrate that 
circ-arRNAs either generated by genetically encoded strategy or 
produced in vitro can achieve efficient and long-lasting targeted 
RNA editing in endogenous transcripts.

RNA editing specificity of circ-arRNAs. We performed 
transcriptome-wide RNA sequencing analysis to evaluate the 
editing specificity of circ-arRNAs. HEK293T cells transfected 
with circ-arRNA151-PPIA-expressing plasmids were subjected to 
transcriptome-wide RNA sequencing (RNA-seq) analysis, in which 
nontargeting circular Ctrl RNA151 was used as a control. We also 
tested an ADAR2 deaminase domain (ADAR2DD)-overexpressing 
group, because overexpression of ADAR2DD has been used in many 
previously reported RNA editing tools6–14. Transcriptome-wide 

RNA-seq results showed there were 17 potential off-target edits in 
the circ-arRNA151-PPIA transfection group (Fig. 4a). However, the 
ADAR2DD overexpression group resulted in nearly 16,588 off-target 
edits in the RNA transcriptome compared with the control (Fig. 4b), 
much higher than for circ-arRNA (Fig. 4c). Most of the 17 identi-
fied off-target sites in the circ-arRNA151-PPIA transfection group 
were located in the intron and pseudogene regions (Supplementary  
Fig. 6a). Minimum free energy analysis indicated that all these 
off-target hits failed to form a stable duplex with circ-arRNA151-PPIA 
(Supplementary Fig. 6b), and thus are unlikely to be actual 
sequence-dependent off-targets.

To test whether circ-arRNA151-PPIA would affect the expression 
level of targeted PPIA transcripts, we used the above transcriptome- 
wide RNA-seq data for further analysis. Circ-arRNA151-PPIA- 
mediated editing in PPIA transcripts affected neither the expres-
sion nor splicing pattern of PPIA transcripts (Fig. 4d and 
Supplementary Fig. 7a–c) and, consistent with our previous 
observations32, neither was the protein level of PPIA affected 
(Fig. 4e). In addition, A-to-I RNA editing sites shared in the 
circ-arRNA151-PPIA and control (Ctrl) RNA151 groups were highly 
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parallel to each other, indicating that circ-arRNAs have little impact 
on the normal A-to-I editing function of endogenous ADAR  
proteins (Fig. 4f).

Engineered circ-arRNAs reduce bystander off-target editing. 
In addition to transcriptome-wide off-target analysis, we tested 
bystander off-target edits on the arRNA-covered regions of the 
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targeted transcripts. Our previous results showed that A-G mis-
matching can significantly reduce the bystander off-target edits of 
arRNAs32 because adenosine deamination requires an ADAR to flip 
the reactive base out of the RNA double helix to access its active 
site40. Based on the catalytic feature of ADAR1/2 (refs. 41–43), we 
found that targeted RNA editing was completely eliminated when 
we deleted the nucleotide opposite the targeted adenosine in linear 
arRNAs (Fig. 5a) or circ-arRNAs (Fig. 5b). Based on this finding, 
we tested the use of such an approach to reduce bystander off-target 
edits by deleting nucleotides opposite to unwanted adenosines in 
circ-arRNA-covered regions (Fig. 5c). We designed different ver-
sions of circ-arRNAs targeting endogenous PPIA transcripts, 
circ-arRNA151, circ-arRNA151-AΔ5, circ-arRNA151-AΔ8, circ-arRNA151_
AC50 and circ-arRNA151-AΔ14_AC50, in which we retained or 
deleted uridines on circ-arRNA opposite potential off-target sites  
(Fig. 5c,d and Supplementary Table 1). It is not uncommon in mam-
malian cells for adenosines in imperfect dsRNA with mismatches 
or bulges to be effectively edited by ADARs with high specific-
ity and efficiency44,45. Notably, we found that circ-arRNA151-AΔ8 
remarkably reduced off-target editing at all eight sites tested, and 
circ-arRNA151-AΔ14_AC50 almost eliminated all bystander off-targets 
while still maintaining 60% editing efficiency on the targeted site 
(Fig. 5e,f). NGS reads surrounding the on-target site showed that 
circ-arRNA151-AΔ14_AC50 could generate targeted editing with no 
bystander off-targets in >90% of edited transcripts (Fig. 5g).

We then tested in vitro-synthesized circ-arRNA151-AΔ14 and found 
that it could also achieve efficient editing in a dose-dependent man-
ner (Supplementary Fig. 8). Consistent with our previous obser-
vation32, circ-arRNAs with or without deletion did not affect the 
expression level of ADAR, nor elicit an innate immune response 
(Supplementary Fig. 9a,b).

Activation of Wnt signaling pathway via circ-arRNAs. To fur-
ther confirm whether circ-arRNA-mediated targeted editing would 
affect protein function, we designed circ-arRNAs targeting the T41 
codon of CTNNB1 (ref. 46) that converts threonine to alanine, to 
accumulate β-catenin and consequently to activate the Wnt path-
way46 (Fig. 6a). We found that circ-arRNA151 yielded 32% editing 
at this site (Fig. 6b), leading to a 53-fold increase in activity of 
the β-catenin signal pathway while linear arRNA151 generated an 
increase of only twofold (Fig. 6c).

Recovery of p53 transcriptional activity by circ-arRNAs with 
high efficiency and specificity. We explored potential therapeu-
tic uses of circ-arRNAs aiming to target the TP53 tumor suppres-
sor gene, which undergoes frequent mutations in >50% of human 
cancers47. The c.158G-to-A variant of TP53 is a clinically relevant 
non-sense mutation (Trp53Ter) generating a functional truncated 
protein (Fig. 6d). We designed different versions of circ-arRNAs 
targeting TP53W53X flanked by flexible RNA linkers or harboring a 

U deletion (Fig. 6d,e). NGS analysis showed variable editing rates 
on the targeted adenosine: ~30% was achieved with circ-arRNA151 
while ~40% was achieved with circ-arRNA151-AG1, circ-arRNA151-AG4 
and circ-arRNA151-AΔ1, with A-G mismatch or U deletion at one 
undesirable off-target site (Fig. 6f and Supplementary Table 1). All 
rates were higher with circ-arRNAs than with the corresponding 
linear arRNAs32. The circ-arRNA151-AΔ4 with a U deletion at four 
potential off-target site groups conferred an increased editing rate 
of ~50% (Fig. 6f).

We inserted 50-nt polyAC RNA linkers flanking the arRNA 
sequences in both circ-arRNA151 and circ-arRNA151-AΔ4 (Fig. 6e). 
NGS analysis showed that such optimization with flexible linkers 
indeed increased targeted RNA editing efficiency at this site, espe-
cially for circ-arRNA151-AΔ4_AC50, which yielded ~70% of editing 
(Fig. 6f).

In addition to transcript editing, all versions of circ-arRNAs effec-
tively rescued the production of full-length p53 protein in HEK293T 
TP53–/– cells (Supplementary Fig. 10a). Using a previously reported 
p53-luciferase cis-reporting system48,49, we demonstrated that all 
versions of circ-arRNAs were able to restore the transcriptional 
regulation function of p53 (Fig. 6g). The circ-arRNA151-AΔ4_AC50, 
which exhibited the highest editing rate, restored transcriptional 
regulation activity to the greatest extent and was remarkably more 
effective than the linear arRNA version32 (Fig. 6g).

Finally, we examined potential off-target edits in 
circ-arRNA-covered regions. As expected, deletion of the U nucleo-
tide opposite the potential off-target A nucleotide on circ-arRNAs 
almost completely abolished bystander off-target edits at four 
predicted sites (Fig. 6h and Supplementary Fig. 10b), while it 
further increased the on-target editing rate (Fig. 6f). Of note, 
although circ-arRNA151_AC50 showed higher editing efficiency 
than circ-arRNA151-AΔ4 at the targeted site (Fig. 6f), the func-
tional recovery level of circ-arRNA151-AΔ4 was much higher than 
that of circ-arRNA151_AC50 because of its low rate of bystander 
off-target effects (Fig. 6h and Supplementary Fig. 10b). Collectively, 
these results show that LEAPER 2.0 can significantly increase the 
on-target editing rate while eliminating off-target effects.

Restoration of α-L-iduronidase activity in Hurler syndrome 
mice by circ-arRNAs. Hurler syndrome is the most severe sub-
type of mucopolysaccharidosis type I, because of the deficiency of 
α-L-iduronidase (IDUA), a lysosomal metabolic enzyme respon-
sible for the metabolism of mucopolysaccharides. We studied 
treatment of a mouse model of Hurler syndrome harboring a 
homozygous W392X (TGG-to-TAG) point mutation in exon 9 of 
Idua, which is analogous to the W402X mutation found in patients 
with Hurler syndrome50. We designed two versions of circ-arRNAs 
targeting the mature messenger RNA or pre-mRNA of Idua 
(Fig. 6i and Supplementary Table 1). Circ-arRNA151/mRNA or 
circ-arRNA151/pre-mRNA targeting was delivered to Idua-W392X 

Fig. 6 | Activation and restoration of protein function in cell culture and Hurler syndrome mice by circ-arRNAs. a, Schematic of cells accumulating 
β-catenin and activating the Wnt signaling pathway. b, nGS analysis of editing rates at the targeted site in CTNNB1 transcripts; n = 3, mean ± s.d.  
c, Activation fold change of Wnt signaling pathway by linear arRnAs and circ-arRnAs; n = 2, mean ± s.d. d, Schematic of the TP53W53X transcript sequence 
covered by the 151-nt arRnA containing a c.158G-to-A clinically relevant non-sense mutation (Trp53Ter). Black arrow indicates the targeted adenosine.  
The design of circ-arRnAs targeting TP53W53X transcripts with a U deletion opposite A66th, together with A36th, A111th, and A114th, to minimize potential 
off-target edits in editing-prone motifs. e, Schematic of the TP53 transcript sequence targeted by circ-arRnA151_AC50 (top) and circ-arRnA151-AΔ4_
AC50 (bottom). f, nGS results showing targeted editing of TP53W53X transcripts by circ-arRnA151, circ-arRnA151-AG1, circ-arRnA151-AG4, circ-arRnA151-AΔ1, 
circ-arRnA151-AΔ4, circ-arRnA151_AC50 and circ-arRnA151-AΔ4_AC50; n = 3, mean ± s.d. g, Detection of transcriptional regulatory activity of restored p53 
protein using a p53-firefly luciferase reporter system, normalized by a cotransfected Renilla luciferase vector; n = 3, mean ± s.d. h, Editing efficiency at four 
potential off-target sites showing a reduction in bystander off-target editing via U deletions on circ-arRnA151; n = 3, mean ± s.d. i, Schematic of the IduaW392X 
transcript sequence targeted by circ-arRnA151/mRnA targeting and circ-arRnA151/pre-mRnA targeting. j, nGS results showing editing rates for targeted 
adenosine of Idua transcripts in mouse hepatocytes; n = 4 for control group, n = 6 for treatment groups, mean ± s.d. k, Measurement of the catalytic activity 
of IDUA with a 4-methylumbelliferyl IDUA substrate in different groups; n = 4, mean ± s.d. l, Tissue GAG content in wild type (WT) mice, IDUAW392X mice 
and treatment groups; n = 6, mean ± SD. m, Relative quantitation of Idua expression in different treatment groups (normalized to GAPDH); n = 4, mean ± s.d.
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mice via transduction of a self-complementary AAV (scAAV). Four 
weeks later, the mice were sacrificed and liver tissues were collected 
for the measurement of targeted RNA editing and catalytic activ-
ity of IDUA. NGS analysis revealed that both circ-arRNA151/mRNA 
and circ-arRNA151/pre-mRNA targeting achieved a ~10% targeted 

editing rate (Fig. 6j). Consistent with the sequencing results, both 
circ-arRNAs significantly restored IDUA catalytic activity in the 
liver tissues of Idua-W392X mice (Fig. 6k) while liver glycosami-
noglycan (GAG) content also decreased in the circ-arRNA group  
(Fig. 6l). The presence of circ-arRNAs did not affect the abundance 
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of Idua transcripts (Fig. 6m). These results demonstrate the poten-
tial of LEAPER 2.0 for precise, efficient and long-lasting targeted 
RNA editing in certain clinical genetic diseases.

Discussion
In this study, we improved our previously reported LEAPER sys-
tem32 by using engineered circ-arRNAs rather than linear arRNAs, 
achieving more efficient and specific targeted RNA editing of 
endogenous transcripts. Owing to their covalently closed ring 
structure, circ-arRNAs are more stable and resistant to degrada-
tion than linear arRNAs33–35. We demonstrate improved efficiency 
of targeted RNA editing, on average ~3.1-fold compared with linear 
arRNAs in most sites (Figs. 2a and 3d)32. Moreover, the time period 
of RNA editing is longer, up to 21 days (Fig. 1g), a potential ben-
efit in therapeutic applications. Consistently, circ-arRNAs delivered 
through AAV or scAAV achieved long-lasting and much improved 
editing at the target site (Figs. 2 and 6).

Moreover, we engineered circ-arRNAs to reduce bystander 
off-target edits and improve the on-target editing rate. LEAPER 
2.0 causes fewer transcriptome-wide off-target edits compared 
with ectopic expression of ADAR2DD (Fig. 4). The major off-target 
edits of LEAPER are bystander off-target edits within the targeted 
RNA region covered by arRNAs, and we previously reported an 
approach to minimization of such off-target edits using an A-G 
mismatch strategy32. We sought to further minimize such off-target 
edits with LEAPER 2.0, and found that additional engineering of 
circ-arRNAs with U deletion opposite potential off-target adeno-
sines significantly reduced site-specific bystander off-target edits 
in the circ-arRNA-covered region (Figs. 5e–g and 6h). Moreover, 
the engineered circ-arRNAs improved the rate of on-target editing 
in TP53W53X transcripts (Fig. 6f). The introduction of flexible RNA 
linkers flanking arRNA further enhanced the on-targeting editing 
rate of circ-arRNA at most sites (Figs. 2a, 5f and 6f), and other types 
of linkers with similar effects remain to be explored.

Finally, we have demonstrated that circ-arRNAs can either be 
delivered as in vitro-transcribed RNA oligonucleotides (Fig. 3) or 
expressed in vivo using an AAV vector (Figs. 2 and 6). Circ-arRNAs 
delivered into Hurler syndrome model mice via scAAV transduc-
tion successfully corrected a pathogenic mutation of IduaW392X and 
restored IDUA catalytic activity. Circ-arRNAs are well suited for 
delivery by a variety of nonviral vehicles, including lipid nanopar-
ticles51 and clinical antisense oligonucleotide RNA drugs52,53. 
Collectively, LEAPER 2.0 enables precise, efficient RNA editing 
with broad applicability for therapy and basic research.
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Methods
Plasmid construction. For linear arRNA-expressing constructs, sequences of 
arRNAs were synthesized and Golden Gate cloned into the pLenti-sgRNA-lib 2.0 
backbone (Addgene, no. 89638), with transcription of arRNA driven by either the 
hU6 or CMV promoter. For genetically encoded circ-arRNA-expressing constructs, 
we first constructed a cloning vector based on a pLenti-sgRNA-lib 2.0 vector 
that included a Twister P3 U2A, a 5' ligation sequence, a 3' ligation sequence and 
Twister P1 (ref. 36). The sequences of arRNAs or random sequence nontargeting 
control RNAs were then synthesized and Golden Gate cloned into the autocatalytic 
circular RNA expression vector. The ribozyme mutation and deletion version 
precursor were constructed into the same backbone.

To increase editing efficiency further, circ-arRNA151 was flanked by a 20-nt 
spacer and 30-nt polyAC sequences (AC50), then Golden Gate cloned into the 
genetically encoded circ-arRNA-expressing vector.

To reduce off-target editing, nucleotides opposite potential off-target 
adenosines were deleted and then cloned into the genetically encoded 
circ-arRNA-expressing vector.

To create the dual-fluorescence reporter, mCherry and eGFP coding sequences 
(the ATG start codon of eGFP was deleted) were PCR amplified and digested using 
BsmBI (Thermo Fisher Scientific, no. ER0452) before being subjected to T4 DNA 
ligase (NEB, no. M0202L)-mediated ligation with 3 × GGGGS linkers. The ligation 
product was subsequently inserted into the pLenti-CMV-MCS-PURO backbone.

To create constructs expressing genes with pathogenic mutations, full-length 
coding sequences of TP53 (ordered from Vigenebio and donated by J. Wang’s 
laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences) 
were amplified from constructs encoding the corresponding genes with the 
introduction of G-to-A mutations through mutagenesis PCR. Amplified products 
were cloned into the pLenti-CMV-MCS-mCherry backbone through the Gibson 
cloning method.

Gene vectors ADAR1p110, ADAR1p150 and ADAR2 were a gift from J. 
Han’s laboratory, Xiamen University. These three genes were cloned into the 
pLenti-CMV-MCS-BSD backbone.

Cell line construction. To construct stable reporter cell lines, reporter constructs 
(pLenti-CMV-MCS-PURO backbone) were cotransfected into HEK293T cells 
together with two viral packaging plasmids, pR8.74 and pVSVG. After 72 h, viral 
supernatant was collected and stored at −80 °C. HEK293T cells were infected 
with lentivirus, and then mCherry+ cells were sorted via fluorescence-activated 
cell sorting (FACS) and cultured to select a single clone cell line stably expressing 
a dual-fluorescence reporter system with no detectable eGFP background. Cell 
lines HEK293T ADAR1–/– and TP53 –/– were generated according to a previously 
reported method54. ADAR1-targeting single-guide RNA and PCR-amplified 
donor DNA containing the CMV-driven puromycin resistance gene were 
cotransfected into HEK293T cells. Cells were then treated with puromycin 7 days 
after transfection. Single clones were isolated from puromycin-resistant cells and 
verified through sequencing and immunoblot analysis.

Production and purification of circRNAs in vitro. The production of circRNAs 
was performed according to previous reports. Briefly, circRNA precursors were 
synthesized via in vitro transcription (IVT) from linearized circRNA plasmid 
templates with a HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, 
no. E2040S). After IVT, the IVT products were treated with DNase I (New England 
Biolabs, no. M0303S) for 30 min to digest DNA templates. For T4 RNA ligase 
circularization, either T4 RNA ligase 1 (New England Biolabs, no. M0239L) or T4 
RNA ligase 2 (New England Biolabs, no. M0204L) was added to linear circRNA 
precursors and the mixture incubated at 37 °C overnight following DNase I 
digestion. For group I autocatalytic circularization, guanosine 5'-triphosphate was 
added to the reaction at a final concentration of 2 mM after DNase I digestion, 
then the reactions were incubated at 55 °C for 15 min to catalyze circRNA 
circularization. Cyclized circ-arRNAs were then column purified with a Monarch 
RNA Cleanup Kit (New England Biolabs, no. T2040L), and column-purified 
RNA was heated at 65 °C for 3 min and cooled on ice. The reactions were treated 
with RNase R (Epicentre, no. RNR07250) at 37 °C for 15 min to enrich circRNAs. 
RNase R-treated RNA was column purified.

To further enrich circ-arRNAs, purified RNase R-treated circ-arRNAs were 
resolved using HPLC (Agilent HPLC 1260) through a 4.6 × 300-mm2 size-exclusion 
column with a particle size of 5 μm and pore size of 2,000 Å (Sepax Technologies, 
no. 215980P-4630) in RNase-free TE buffer using an Agilent HPLC 1260. 
Circ-arRNA-enriched fractions were collected and then column purified (New 
England Biolabs, no. T2040L). To further diminish the immunogenicity of purified 
circ-arRNAs, they were heated at 65 °C for 3 min, cooled on ice and subsequently 
treated with Quick CIP phosphatase (New England Biolabs, no. M0525S). Finally, 
circ-arRNAs were column purified and concentrated with an RNA Clean & 
Concentrator Kit (ZYMO, no. R1018).

Site-specific circRNA cleavage by RNaseH. Purified circ-arRNA and the same 
sequence precursor were proformed by RNaseH cleavage assay. Site-specific 
cleavage was performed in reactions containing 500 ng of target RNA, 50 pmol of 
the sense or antisense primer (Tsingke Biological Technology) and RNaseH buffer 

in a total volume of 18 μl. Reactions were incubated at 50 °C for 10 min followed 
by the addition of 2 μl of RNaseH (NEB, no. M0297L). Reactions proceeded for 
2 h at 37 °C.

Cell culture and transfection. HeLa cells were obtained from Z. Jiang’s laboratory 
(Peking University), and HEK293T cells were obtained from C. Zhang’s 
laboratory (Peking University). A549 cells were obtained from EdiGene. C2C12 
(ATCC, no. CRL-1772) cells were purchased from Procell. MEFs were generated 
from Idua-W392X mice. Hep G2 (ATCC, no. HB-8065)/RPE1 (ATCC, no. CRL-
4000)/SF268 (NCI, no. 0502763)/COS-7 (ATCC, no. CRL-1651)/NIH3T3 (ATCC, 
no. CRL-1658) cells were maintained in our laboratory at Peking University. 
These mammalian cell lines were cultured in DBEM (Corning, no. 10-013-CV) 
with 10% fetal bovine serum supplemented with 1% penicillin–streptomycin 
under 5% CO2 at 37 °C. Human primary hepatocytes (lonza, no. CC-3198) and 
cerebral organoids (HOPSTEM BIOTECH) were cultured according to the 
manufacturer’s instructions.

Plasmids were transfected into cells with either X-tremeGENE HP DNA 
transfection reagent (Roche, no. 06366546001) or PEI (Proteintech, no. B600070), 
and RNAs cyclized in vitro were transfected into cells with Lipofectamine 
MessengerMax (Invitrogen, no. LMRNA003) according to the manufacturer’s 
instructions.

RNA editing of exogenous transcripts. To assess RNA editing with the 
dual-fluorescence reporter system, HEK293T reporter cells were seeded in 12-well 
plates (~1–3 × 105 cells per well). After 24 h, cells were transfected with 2 μg 
of linear arRNA or circ-arRNA plasmids. Forty-eight hours after transfection, 
editing efficiency was assayed by quantification of the eGFP+ ratio. ADAR1–/– 
HEK293T cells were transfected with reporter and linear arRNA or circ-arRNA 
plasmids as described for dual-fluorescence reporter cells.

To assess RNA editing efficiency in multiple cell lines, either 1 × 105 cells (HeLa, 
Hep G2, A549, RPE1, SF268, C2C12, NIH3T3, COS-7) or 4 × 105 cells (HEK293T) 
were seeded in 12-well plates. Twenty-four hours later, reporter and arRNA 
plasmids were transfected into these cells. Editing efficiency was assayed according 
to the protocol given in Supplementary Fig. 1d.

To evaluate the eGFP+ ratio, cells were sorted and collected by FACS analysis 
48 h post transfection. The mCherry signal served as a fluorescent selection marker 
for reporter/circ-arRNA-expressing cells, and percentages of eGFP+/mCherry+ cells 
were calculated as the readout for editing efficiency.

Separation of cytoplasm and nucleus. HEK293T cells were seeded in six-well 
plates (8 × 105 cells per well). Twenty-four hours later, cells were transfected with 
arRNA or circ-arRNA. Forty-eight hours post transfection, cells were collected and 
suspended in 200 μl of cytoplasmic lysis buffer containing 0.15% NP-40 (Thermo, 
no. FNN0021), 10 mM Tris HCl pH 7.0, 150 mM NaCl, Protease inhibitor (Roche, 
no. P8340) and RNase inhibitor (NEB, no. K1046) on ice. After 5 min, 500 μl of 
sacrose buffer containing 25% sacrose, 10 mM Tris HCl pH 7.0, 150 mM NaCl, 
Protease inhibitor (Roche, no. P8340) and RNase inhibitor (NEB, no. M0314L) was 
added slowly along the side wall. After centrifugation at 16,000g at 4 °C for 10 min, 
supernatant and sediment were separated as cytoplasmic and nucleic fractions, 
respectively. RNAs were isolated (Zymo, no. R1055) and reverse transcribed into 
complementary DNA with reverse-transcription PCR (RT–PCR).

RNA editing of endogenous transcripts. To assess RNA editing on endogenous 
mRNA transcripts, HEK293T cells were seeded in six-well plates (8 × 105 cells  
per well). Twenty-four hours later, cells were transfected with 4 μg of linear or 
circular arRNA plasmids. Forty-eight hours post transfection, cells were sorted  
and collected by FACS according to the protocol given in Supplementary Fig. 1d.  
For arRNAs targeting KRAS sites 3, 4 and 5, we collected total cells. RNA was 
isolated (Zymo, no. R1055) and reverse transcribed into cDNA via RT–PCR 
(Tiangen, no. KR118).

To assess RNA editing over a longer period of time, HEK293T cells were 
seeded in 12-well plates (4 × 105 cells per well). Twenty-four hours later, cells were 
transfected with 3 μg of linear or circular arRNA plasmids. To evaluate long-term 
RNA editing of arRNAs delivered by AAV, 1 × 105 HEK293T cells and 4 × 105 
human primary hepatocytes were seeded in 24-well plates per well. Twenty-four 
hours later, cells were infected with AAV at a multiplicity of infection of either 
1 × 106 (HEK293T, AAV9) or 5 × 105 (hepatocytes, AAV8). To further evaluate 
long-term RNA editing in organoids, cerebral organoids in 96-well plates were 
infected with 5 × 1011 genetic copies per well of AAV9 and then transferred to 
six-well plates 1 h after infection. Infected cerebral organoids were then cultured 
in a table concentrator at 66 r.p.m. Cells were collected at different time points and 
editing efficiency was assayed by NGS. Total RNA was isolated (Zymo, no. R1055) 
and reverse transcribed into cDNA via RT–PCR (TransGen Biotech, no. AH301).

The targeted locus was PCR amplified with the corresponding primers listed in 
Supplementary Table 2. PCR products were purified for Sanger sequencing or NGS 
(Illumina HiSeq X Ten).

RNA editing analysis of targeted sites. For NGS analysis, an index was 
generated using the targeted site sequences (20 nt upstream and downstream) 
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of arRNA-covered regions. Reads were aligned and quantified using Burrows–
Wheeler aligner (v.0.7.10-r789). BAM alignment files were then sorted with 
SAMtools (v.1.1) and RNA editing sites were analyzed using REDitools (v.1.0.4). 
The parameters were as follows: -t 8 -U [AG] -n 0.0 -T 6-6 -e -d -u. All significant 
A-to-G conversions within the arRNA-targeted regions calculated by Fisher′s exact 
test (P < 0.05) were considered edits made by arRNAs. Conversions at sites other 
than targeted adenosines were considered off-target edits. Mutations that appeared 
in the control and experimental groups simultaneously were considered to be due 
to single-nucleotide polymorphisms (SNPs).

Transcriptome-wide RNA sequencing analysis. Ctrl RNA151- or 
circ-arRNA151-PPIA-expressing plasmids with a blue fluorescent protein (BFP) 
expression cassette were transfected into HEK293T cells. BFP+ cells were enriched 
by FACS 48 h after transfection, and RNA was purified with the RNAprep Pure 
Micro Kit (Tiangen, no. DP420). mRNA was then purified using an NEBNext 
Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, no. E7490), 
processed with an NEBNext Ultra II RNA Library Prep Kit for Illumina (New 
England Biolabs, no. E7770) and subjected to NGS analysis using an Illumina 
HiSeq X Ten platform (2 × 150-base pair (bp) paired-end reads; 30 Gb for each 
sample). To exclude nonspecific effects caused by transfection, we included a 
mock group in which we treated cells with transfection reagent only. Each group 
contained four replicates.

The bioinformatics analysis pipeline followed the work of Vogel et al.13. 
Quality control was conducted using FastQC (v.0.11.8), and quality trimming 
was performed with Cutadapt (v.1.16; the first 6 bp of each read were trimmed, 
and up to 20 bp quality trimmed). AWK scripts were used to filter out the 
introduced circ-arRNAs. After trimming, reads of length <90 nt were filtered out. 
Subsequently, filtered reads were mapped to the reference genome (GRCh38-hg38) 
by STAR software (v.2.6.1b). We used the GATK HaplotypeCaller (v.4.0.7.0) to 
call variants. The raw variant call format files generated with GATK (v.4.0.7.0) 
were filtered and annotated with GATK VariantFiltration (v.4.0.7.0), bcftools 
(v.1.9) and ANNOVAR. Variants in dbSNP, the 1000 Genomes Project database 
and EVS were filtered out. Shared variants in six replicates of each group 
were then selected as RNA editing sites. For SNP filtration, GATK (v.4.0.7.0) 
parameters were set as follows: QD < 2.0, FS > 60, MQ < 30, MQRankSum < −12.5, 
ReadPosRankSum < −8.0, DP < 20.0, QUAL < 20.0. The RNA editing level of the 
mock group was viewed as the background, and the global targets of Ctrl RNA151 
and circ-arRNA151-PPIA were obtained by subtracting variants in the mock group.

RNA-seq data were analyzed for interrogation of possible transcriptional 
changes induced by RNA editing events. Analysis of transcriptome-wide gene 
expression was performed using HISAT2 (v.2.1.0) and STRINGTIE (v.1.3.5) 
software. We used Cutadapt (v.1.16) and FastQC (v.0.11.8) for quality control of 
sequencing data. Sequencing reads were then mapped to the reference genome 
(GRCh38-hg38) using HISAT2 (v.2.1.0), followed by Pearson′s correlation 
coefficient analysis as mentioned above. FPKM values were calculated with 
STRINGTIE (v.1.3.5).

To assess whether circ-arRNAs perturb natural editing homeostasis, we 
analyzed global editing sites shared by the Ctrl RNA151 and circ-arRNA151-PPIA 
groups. Differential RNA editing rates at native A-to-I editing sites were assessed 
using Pearson’s correlation coefficient analysis.

Assay of activation of CTNNB1. To evaluate activation of the Wnt signaling 
pathway, HEK293T cells were seeded in 12-well plates (4 × 105 cells per well). 
Twenty-four hours later, cells were transfected with 2 μg of linear or circular 
arRNA plasmids targeting the transcripts of CTNNB1 (T41), 500 ng of TOPFlash 
(beyotime, no. D2501) or FOPFlash (beyotime, no. D2503) and 25 ng of Renilla 
luciferase. Total cells were collected and assayed using the Promega Dual-Glo 
Luciferase Assay System (Promega, no. E2940) according to the manufacturer’s 
protocol 72 h post transfection. The TOPFlash reporter provides a metric of 
β-catenin activation when compared to the background as measured by the 
FOPFlash reporter under the same condition. The accumulated β-catenin activated 
the TOPFlash reporter by binding the promoter region but not the FOPFlash 
reporter, which contains a mutation on the promoter region. Folding activation 
was calculated by taking the ratio of the average TOPFlash measurement divided 
by the average FOPFlash measurement.

Assay of transcriptional regulatory activity of p53. TP53W53X cDNA-expressing 
plasmids and circ-arRNA-expressing plasmids were transfected into HEK293T 
TP53–/– cells, together with p53-firefly luciferase cis-reporting plasmids (YRGene, 
no. VXS0446) and Renilla luciferase plasmids (gifts from Z. Jiang’s laboratory, 
Peking University) to detect the transcriptional regulatory activity of p53. 
Forty-eight hours after transfection, cells were collected and assayed with a 
Promega Dual-Glo Luciferase Assay System (Promega, no. E2940) according to the 
manufacturer’s protocol. Luminescence was measured by an Infinite M200 reader 
(Tecan). Fold change in p53-induced luciferase activity was calculated as the ratio 
of firefly luminescence to Renilla luminescence.

Immunoblot analysis. We used mouse monoclonal primary antibodies against 
p53 (Santa Cruz, no. sc-126), anti-cyclophilin A antibody (abcam, no. ab58144) 

and β-tubulin (CWBiotech, no. CW0098). A horseradish-peroxidase-conjugated 
goat anti-mouse IgG secondary antibody (H + L, no. 115-035-003) was purchased 
from Jackson ImmunoResearch. Next, 2 × 106 cells were sorted for lysis and an 
equal amount of protein from each lysate was loaded for SDS–PAGE, then sample 
proteins were transferred to polyvinylidene difluoride membranes (Bio-Rad 
Laboratories). Membranes were immunoblotted with primary antibodies 
(anti-p53, 1:300; anti-cyclophilin A, 1:1,000; anti-tubulin, 1:2,000), incubated with 
a secondary antibody (1:3,000) and exposed. The experiments were repeated three 
times. Semiquantitative analysis was performed with Image Lab software.

Cytokine expression assay and ADAR relative quantification. HEK293T cells 
were seeded on 12-well plates (4 × 105 cells per well). When approximately 70% 
confluent, cells were transfected with 3 μg of circ-arRNA. As a positive control, 
1 μg of poly (I:C) (Invitrogen, tlrl-picw) was transfected. Forty-eight hours later, 
cells were collected and subjected to RNA isolation (Zymo, no. R1055). Then, total 
RNAs were reverse transcribed into cDNA via RT–PCR (TIANGEN, no. KR103-04)  
and expression levels of RIG-I, MDA5, OAS1, OASL, PKR, IFN-β, ISG56, IL-6, IL-8, 
RANTES, IL-12, IL-1β, MCP1, MIP1A, IL10, ADAR1p110, ADAR1p150 and ADAR2 
were measured by qPCR (TAKARA, no. RR820A). Primer sequences are listed in 
Supplementary Table 2.

Animal experiments. The experimental animals included 4- or 6-week-old 
Idua-W392X (B6.129S-Iduatm1.1Kmke/J) female mice (Jackson Laboratory, no. 
017681) and C57BL/6 J female mice (Beijing Vital River Laboratory). Mice were 
housed at 18–23 °C with 40–60% humidity under a normal 12/12-h light/dark cycle 
with food and water available ad libitum under specific-pathogen-free conditions 
in the Laboratory Animal Center of Peking University. The animal experiments 
were approved by Peking University Laboratory Animal Center (Beijing) and 
undertaken in accordance with the National Institutes of Health Guide for Care 
and Use of Laboratory Animals.

Circ-arRNAs were packaged in AAV8 by PackGene Biotech. The AAV titer 
was 1 × 1013 virus/200 μl; 200 μl of AAV was injected into the tail vein of each 
IDUA-W392X mouse. Mice were monitored four times per week for the duration 
of the experiment (4 weeks).

Harvested mouse tissues were homogenized in 1 ml of TRIzol, and RNA was 
extracted by the chloroform extraction method. Tissue RNA was then reverse 
transcribed, PCR amplified and analyzed by Sanger sequencing or NGS. Four or six 
independent biological replicates were performed in each experiment.

IDUA catalytic activity assay. Gathered cell pellets were resuspended and lysed 
with 28 μl of 0.5% Triton X-100 in 1 × PBS buffer on ice for 30 min. Then, 25 μl 
of cell lysate was added to 25 μl of 190 μM 4-methylumbelliferyl-α-l-iduronidase 
substrate (Cayman, no. 2A-19543-500), which was dissolved in 0.4 M sodium 
formate buffer containing 0.2% Triton X-100 (pH 3.5) and incubated for 90 min at 
37 °C in the dark. The catalytic reaction was quenched by the addition of 200 μl of 
0.5 M NaOH/glycine buffer (pH 10.3) and then centrifuged for 2 min at 4 °C. The 
supernatant was transferred to a 96-well plate, and fluorescence was measured at 
365-nm excitation wavelength and 450-nm emission wavelength with an Infinite 
M200 reader (Tecan). The standard curve generated used pure end product 
(4-methylumbelliferone).

Measurement of tissue GAG. The GAG content of liver tissue were measured 
using the Blyscan GAG assay kit (Blyscan, no. B1000): 50 mg of liver tissue was 
digested with 1 ml of papain extraction reagent at 65 °C for 3 h. Supernatant GAG 
content was assayed according to the manufacturer’s protocol.

Statistics and reproducibility. The number of independent experiments 
performed in parallel is represented by n. Unpaired two-tailed Student′s t-test was 
implemented for group comparisons as indicated in the figure legends. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. Three independent experiments were 
performed in Figs. 1e, 3b and 4e and Supplementary Figs. 2e, 5b and 10a, with 
similar results. For transcriptome-wide RNA-seq analysis, two independent 
experiments were performed in ADAR2DD overexpression groups; six and three 
independent experiments were performed in cells transfected by circ-arRNA151 and 
Ctrl RNA151, respectively.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data and materials presented in this manuscript are available from the 
corresponding author (W.W.) upon reasonable request with a completed material 
transfer agreement. Raw data for whole-transcriptome RNA-seq are available as a 
BioProject with Project ID PRJNA775856. Source data are provided with this paper.
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